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A numerical study for the solution of integral equations using random numbers from con- 
gruential generators and the Halton and the Faure sequences is presented. The results indicate 
that for high-precision Monte Carlo, quasi random sequences yield better results, in general. 
The relative performance of the quasi random sequences is better with Monte Carlo schemes 
which reduce the dimensionality of the problem. :I 1987 Academw Prey. Inc. 

1. INTRODUCTION 

The solution of integral equations are often estimated using simulated random 
walks, as, for example, in radiation transport problems [ 11. The random sequences 
that are generally used for such simulations arise from congruential pseudo random 
numbers and are known as pseudo random sequences (PRS). However, as has been 
pointed out [2], these sequences suffer from the following disadvantages: 

(a) for a finite sequence of length N, the rate of convergence is rather slow; 

(b) they show poor lattice distribution properties especially in high dimen- 
sions. 

Because of this unsatisfactory lattice distribution property, Marsaglia [3] 
insisted that for precision Monte Carlo work, congruential generators should not 
be used. Niederreiter [4], however, criticized Marsaglia’s verdict by doubting the 
credentials of the lattice test as a meaningful statistical test. However, he also 
recommended the use of quasi random sequences (QRS) since the QRS have an 
asymptotically better rate of convergence. From a survey of the literature, it 
appears that the theoreticians prefer QRS, whereas the practitioners still prefer PRS 
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because of the fact that for most of the practical problems solved the performance 
of PRS has been remarkably good. In a situation like this, a judicious choice of a 
sequence for a particular problem can be made only after carrying out numerical 
studies on problems where the solution is exactly known. 

Studies carried out with test multidimensional integrals indicate better con- 
vergence with QRS [2]. This is because the upper bound of the error for integrals 
evaluated by uniformly distributed sequences is given by T, W(f) or D, V(j), 
where T, and D, are respectively the root mean square and extremal discrepancies 
of the sequence [IS]. W(f) and V(f) depend on the function f to be integrated and 
can be said to describe the amount of variation in this function. This upper bound 
is valid only for functions which are of bounded variation in the sense of Hardy and 
Krause (BVHK) [4]. For quasi random sequences 

T < c, (log NY 
N-- \ N ’ 

where C, is a constant depending on the sequence as well as the dimension s. On 
the other hand, for a random sequence, the expectation value of T, is given by 

T = (l/2)‘-(l/3)” I,* 
N N > . 

The congruential PRS is expected to follow this trend closely. It is evident that for 
sufficiently large N, QRS will give smaller error than PRS. For integral equations, 
Hua and Wang [6] have shown that the order of error one might expect with QRS 
is similar to that obtained for integrals. 

It may be pointed out here that T, W(f) or D, V(f) give only upper bounds of 
the error and theoretical estimates of them are orders of magnitude larger than the 
true errors. Also, for problems involving large dimensions, numerical estimation of 
the discrepancy as well as the variation of the function are rather difficult and time 
consuming. 

In this paper, we describe a numerical study to compare the relative merits of 
PRS and QRS in solving integral equations with the help of simulated random 
walks. The problem chosen for the present study yields to closed form solutions 
rather easily and at the same time approximates realistic particle transport rather 
closely. Specifically, the following two cases were studied: 

(i) transmission through a one-dimensional finite slab with scattering only in 
the forward direction; 

(ii) transmission and reflection in a one-dimensional finite slab with scatter- 
ing in the forward and backward directions only. 
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2. DESCRIPTION OF ‘THE SEQUENCES 

(i) Congruential Pseudo Random Sequence 

A set of numbers which pass some specified statistical test for randomness are 
known as pseudo random numbers [4]. The commonly used sequence of pseudo 
random numbers, called the congruential pseudo random numbers in the unit inter- 
val [0, 11, may be generated as follows: let m > 2 be an integer. Generate a 
sequence ( Y,), n = 0, l,..., of integers in the least residue system modulo m using the 
recursion Y,, + , = i Y,, + r (mod m), with Y, an integer satisfying 0 < Y, 6 m and i. a 
positive integer relatively prime to m. Then the sequence (X,,), II = 0, l,..., where 
X,, = Y,,/m, is a sequence of congruential pseudo random numbers provided the 
parameters m, A, Y, and r are chosen so that the sequence will pass the test for ran- 
domness. 

A great deal of work has been done on -finding optimum values for the 
parameters m, 2, Y and Y, (see, for example, [4, 71). m is usually selected in accor- 
dance with the machine capabilities, and it is known that r has only a secondary 
influence on the behaviour of the PRS, so that the properties of the sequence are 
mainly governed by the choice of the multiplier i. In the present work, we have 
studied three different PRS, which have been designated PRS - 1, PRS - 2 and 
PRS - 3, respectively. The parameters for these three sequences are 

PRS - 1: m = 2”, r=O, A=65539 

PRS - 2: m = 230, Y = 1, ;, = 410092949 

PRS - 3: m = 2j2, r = 1, ,! = 1812433253. 

Y, in all the cases was taken as 3115. PRS - 1 was available as a subroutine with 
a Morse code used for solving problems in neutron and gamma transport. PRS - 2 
and PRS - 3 were taken from Borosh and Niederetter [7], in which the multipliers 
2 have been chosen such that they are optimal with respect to statistical indepen- 
dence of successive pairs of pseudo random numbers. The multidimensional PRS 
used in the present work were obtained as follows: 

(ii ) Halton Sequence 

A class of infinite sequence in an s-dimensional unit cube has been introduced by 
Halton [S, S]. This sequence is defined as follows. Let pr, p2,..., ps be s integers 
which are relatively prime to each other. Also, let a$“) (n) be the p,-adic expansion 
of n - 1, where n is a positive integer, i.e., 

n- 1 = C a!“’ (n)(pk)‘, 
, = 0 
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and let Xi be defined as 

x;= f up (n)p,‘-‘, ldk<s. 
i=O 

The s-dimensional Halton sequence is then defined as the set of points 
x;, x’, )...) X:,) n = 1) 2 )... . The discrepancy of this class of sequences satisfies the 
inequality [9] 

where 

(3) 

(4) 

In the present study, we have taken p,, p2,..., pS as the first s primes. 
Closely related to the Halton sequence are the scrambled Halton sequences 

defined as 

i=o 

where Ck = (~(~1). I a o is a set of permutations on the ensemble (0, 1,2,..., pk - 1). The 
permutations bk are obtained in such a manner as to reduce the constant C, in 
Eq. (3) as far as possible (this constant corresponds to the one-dimensional dis- 
crepancy obtained with the integer Pk). It is expected that the multidimensional 
discrepancy would also decrease with the use of these permutations. In this work, 
we used the set of permutations suggested by Faure [ 10, 111. 

(iii ) Faure Sequence 

A class of infinite sequences in an s-dimensional unit cube for s 3 2, related to q- 
adic expansions of integers has been introduced by Faure [9]. This sequence is 
defined as follows: let q be a prime with q >s 3 2. Let Xi a,(n) q’ be the q-adic 
expansion of n - 1, where n is a positive integer. Let, 

Xi = 1 a,(n) qip ‘, 
i=O 

k=l 

with (j) = i!/( i -j)!j! 
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Now, let r, ,..., rs be s distinct integers with 1 <r, d q for each 1 6 i< .s. The 
s-dimensional Faure sequence is then defined to be the set of points 

Zrl). . X”y), n = 1, 2 ,..,. In our work we have taken r, = 1, rz = 2 ,..., r, = s. 
Tie discripancy D$ of this class of sequences satisfies the inequality 

(5) 

where 

C*=~1(4-l)/(2logq)l‘, s33 (6) 

if q is a prime with q 3s 3 2. The bounds here have the important property that 
C,s + 0 for s + cc if q is the smallest prime 3 s. 

In the present study, the Faure sequence was used in two different ways: In the 
first method, all the integrals associated with a problem were evaluated using a 
single sequence, which was generated using the smallest prime q larger than the 
largest dimensional integral associated with the problem. This procedure designated 
Faure-1 is similar to that used with PRS. In the second method, designated as 
Faure-2, a number of different sequences were generated with different primes, each 
integral being evaluated with the sequence generated with the smallest prime larger 
than the dimension of that integral. 

3. DESCRIPTION OF THE PROBLEM 

For the purpose of the present study, we have chosen a one-dimensional 
homogeneous slab of finite thickness d with constant total and scattering cross sec- 
tions Z and C,, respectively. The source is a plane parallel beam of particles 
incident normally on one surface of the slab. 

Problem A 

In the first problem, we consider the case when a particle after scattering travels 
in the same direction as the incident one. This problem was solved in two ways. The 
first scheme, A( 1 ), follows analog Monte Carlo procedure, where, 

(i) the distance x to the next collision site is chosen by sampling from the 
distribution .Z exp( - Cx); 

(ii) a score of 1 is given when the collision site lies beyond the boundary of 
the slab; 

(iii) the particle survives the collision with probability C,/Z otherwise it is 
absorbed; 

(iv) the history is terminated whenever the particle travels beyond the boun- 
dary of the slab or is absorbed. 
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The integral equation for the expectation value of the score M, (x) for a particle 
at x can be written as 

M,(x)=jddxTs exp[-Z(x’-x)] M,(x’)+exp[-C(d-x)]. (7) 
x 

This can be readily solved to yield 

M,(x)=exp[-(C-C,)(d-x)]. (8) 

This Monte Carlo scheme simulates the solution of Eq. (4) by a Neumann series 

M, (x0) = : M’, (J-0) 
1=0 

=exp[-C(d-x0)]+ f j’d~,j~d.~~...j~ dx, 
;=, w yii yi(- I 

i C,exp{ -C(x,-xi- ,)}I exp[-C(d-xi)]. 
/=i 

(9) 

The nth term of the series indicates the mean contribution to the score by particles 
which have undergone n collisions and can be eaily obtained as 

M”(x ) = C=s(d- xo)‘” exp[ -z(d- x )] 1 0 IZ! 0 . (10) 

In a random walk simulation, the Neumann series described by Eq. (6) is 
evaluated using an s-dimensional sequence R”, = (R,,, R,, ,..., R,,), m = 1,2 ,..., N; 
where N denotes the total number of histories used for the evaluation. For such a 
case, the ith term in Eq. (6) can be written as 

M;(x,)=j; dR, j; dR,... j; dR,,+, fi [fl(Z,/Z-R,i)] 
,= I 

fi R,,-,-exp[-Z(d-.x)1 exp[-Z(d-x)]-‘fi’ R,,.., 
&=I &=I 

=j~d’,joldR*,.‘j~dR,,+,F,(R,,R,,...,R,,,,). (11) 

Here, 

0(x)=0, x-co 
= 1. x > 0. 
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It may be noted here that the infinite series given by Eq. (6) was terminated after 
a suitable number of terms since the Fame sequence requires predefined dimen- 
sionality for its generation. Care was taken, however, to ensure that the error due 
to truncation was negligible. The Monte Carlo estimate I,,, of I= M, (0) from N 
histories is therefore 

1 N K,2 

IN=; c -f F,(RZf’), 
m=l i=l (12) 

where K/2 is the number of collisions at which the particle history is terminated. 
The relative error is defined by the relation (I, - Z)/Z. 

In the second scheme, A(2), to solve the same problem, the particles were not 
allowed to leave the system or to get absorbed. An expectation estimator was used 
for the scoring. The scheme is as follows 

(i) the particle starts with a statistical weight W= 1; 
(ii) a score W exp( -Cd’) is given, where d’ is the distance of the boundary 

from the present position of the particle; 
(iii) the distance x to the next collision point is chosen from the distribution 

exp( -Cx)/[l -exp(-Ed)]; 
(iv) the weight of the particle is modified by a factor (z,/C)[l - 

exp( -Cd)]; 
(v) steps (ii) through (iv) are repeated till the particle completes a specified 

number of collisions. 
The integral equation for M,(x) in this case is also given by Eq. (4). However, 

the corresponding equation for M{ (x0) is different and can be obtained by a 
straightforward but lengthy procedure as 

M; (x0) = j,’ dR, I,: dR, f dR, [ ‘fjlj+s,L.)i(l -f,), 
/=O 

(13) 

where 
f,=Ll(l-Ri) 

’ 1-M , 
for i3 1 

A.= 1 -exp[-C(d-x0)] for i = 0. 

It may be noted here that the function to be integrated in Eq. (10) is BVHK, 
whereas that in Eq. (8) is not. 

Problem B 

In the second problem, we consider the case in which a particle after scattering 
travels in the same direction with probability a and in an exactly opposite direction 
with probability /? = 1 -LX. Both transmission and reflection from the slab were 
estimated. Again, the problem was solved in two ways. 
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The first method, B(l), is basically similar to A(2). However, in this case, the 
particle direction p after scattering is sampled from the discrete probability 
@6,” + tql-“, where v is the direction before collision, and both p and v take 
values of + 1 or - 1. The scheme can be described as follows: 

(i) the particle starts with p = 1 and W= 1; 
(ii) a score W exp( -Cd) is given for transmission; 
(iii) the distance x to the next collision site is chosen from the distribution 

exp( -~x)ICl - exp( -~~bL))l, w h ere d’(p) is the distance of the particle from the 
transmission boundary for p = 1 and from the reflection boundary for p = - 1. 

(iv) the weight of the particle is modified by a factor (C,/C)[l - 
exp( -C4~))1; 

(v) a score [tx6,,, +/G,+ 1] W exp[ -Cd’( l)] for transmission and of 
b4, , + /C5, 1 ] W exp[ - Ed’( - 1 )] for reflection is given; 

(vi) the particle is allowed to travel in the same direction with probability cc; 
otherwise the direction is reversed. 

The expectation value for the transmission satisfies the coupled set of equations 

M,(x, l)=~& sexpC-Xw41bW(.h ~)+BW(.J+ 111 .1 
+ exp[ -Z(d-- x)] (14a) 

M, (x, - 1) = j; dJL!&-, ev-W-x)lCPW(.k l)+cW(~, 41, (14b) 

where, M, (x, p) is the expected transmission for a particle emitted at x in direction 
,u. The equations for reflection are of a similar nature. 

This coupled set of equations has the solution 

where 

M,(X,~)=A,,exp[-~(d-x)]+B,,exp[~”(d-x)], 

A= [(c-d,)*-/my 

(Z + 2 - CCC,) exp( Id) 
A,=(Z.+i-olZ,)exp(ld)-(Z-i-ctZ,)exp(-Id) 

(15) 

(C-LaC,)exp(-id) 
B1 = (C- A- aZ,) exp( -Ad) - (C + 1 -CL?:,) exp(Ld) 
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The equation for M’, (x, p) for this case can also be worked out in closed form. 
However, this has not been attempted here, since the procedure is somewhat 
lengthy and the final expressions do not yield any extra information except that the 
integrand is BVHK. An infinite series useful for estimating M’, for large i is, 
however, given in Appendix 1. This expression, along with a few numerical 
experiments, was used to ensure that the truncation error arising due to the ter- 
mination of the Neumann series after a finite number of terms was negligible. 

In B(Z), the second method of solving this problem, we have made use of the 
exponential transform. The exponential transform is a widely used variance reduc- 
ing technique in deep penetration radiation transport problems Cl]. The Monte 
Carlo scheme remains almost the same as B( 1) except that instead of the total cross 
section C, a pseudo cross section C*(p) = C( 1 - pk) is used, where k is a constant 
0 6 k < 1. The scheme is as follows: 

(a) ‘in step (ii), the sampling distribution is changed to exp( -Z*(p) x/ 
Cl -expC-C*(p) d’(~)ll; 

(b) in step (iv), the weight modification factor changes to (C,/C)[ 1 - 
exp[Z*(p) ~‘(P)I ew[I - CC- C*(P)) xl. 

The integral equations for M, (x, 1) and M, (x, - 1) in this case will be exactly 
the same as in Eq. (11). since the only difference between the two cases is that here 
we are sampling from an altered distribution. 

TABLE I 

Maximum and Average Errors for Scheme Al 

Max. 

x0 x dim. N,-N, 

Maximum and average errors for 

PRS-1 PRS-2 PRS-3 Halton Faure-1 

2 0.5 11 8,000-15,999 

16,000-31,999 

2 0.9 23 8,000-l 5,999 

16,000-3 1,999 

5 0.5 23 24,000-47,999 

48,000-95,999 

5 0.9 31 24,00@-41,999 

48,ooo-95,999 

1.12-2 1.35-2 3.64-2 2.21-2 2.21-2 

(9.29-3) (8.10-3) (2.40-2) (4.46-3) (1.75-3) 
1.82-2 6.67-3 1.77-2 5.87-3 5.64-3 

(1.28-2) (1.86-3) (1.17-2) (2.15-3) (4.12-4) 

6.78-3 4.67-3 1.62-3 2.15-3 4.39-3 

(5.23-3) (2.35-3) (3.10-3) (5.04-4) (5.99-4) 
8.08-3 3.59-3 5.20-3 9.61-4 1.X2-3 

(5.80-3) (1.44-3) (1.11-3) (4.12-4) (4.12-4) 

1.46-2 2.77-2 8.24-3 3.49-3 2.05-2 

(4.11-3) (1.43-2) (3.00-3) (1.53-2) (1.17-2) 
8.15-3 3.36-2 1.21-2 1.56-2 2.74-2 

(2.71-3) (2.73-3) (3.61-3) (5.97-3) (1.64-2) 

6.32-3 1.29-2 1.07-2 5.27-3 9.64-3 

(2.78-3) (7.30-3) (4.55-3) (2.91-3) (2.76-3) 
2.60-3 7.22-3 6.14-3 2.66-3 2.75-3 

(9.38-4) (5.83-3) (4.42-3) (2.17-3) (1.51-3) 
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4. RESULTS AND DISCUSSIONS 

For integral equations of the type described here, the truncation error may be 
made arbitrarily small by taking a sufficiently large number of terms in the 
Neumann series. The solution of the integral equation can therefore be thought of 
as the evaluation of the sum of a large number of multidimensional integrals. Quasi 
random sequences are therefore expected to give better convergence asymptotically 
as N -+ co. In the present study, we attempt to find out how the two types of 
sequences perform for finite N. 

Table I gives the maximum relative error and the average relative error with 
scheme A( 1) for the three PRS and the Halton and the Faure sequences for two dif- 
ferent thicknesses (2 and 5 mean free paths (mfp)) and two different scattering 
probabilities (0.5 and 0.9). Table II gives the same data with scheme A(2) for three 
different thicknesses (2,5 and 10 mfp). 

TABLE11 

Maximum and Average Errors for Scheme A2 

Max. 
X, C dim. 

Maximum and average errors for 

N,-N, PRS-I PRS-2 PRS-3 Halton Faure-1 Faure-2 

2 0.5 11 

20.9 11 

5 0.5 11 

10 0.5 17 

10 0.9 23 

8,OOGl5,999 

16,00&31,999 

8,000-l 5,999 

16,000-31,999 

8,00@15,999 

16,OOG31,999 

16,00&3 1,999 

24,0@47,999 

48,00&95,999 

24,00&41,999 

48,00&95,999 

3.23-3 
(1.90-3) 
2.14-3 

(1.33-3) 

1.06-3 
(6.30-4) 
6.09-4 

(4.13-4) 

1.02-2 
(5.44-3) 
6.18-3 

(3.76-3) 

2.29-3 
(1.24-3) 
1.58-3 

(9.94-4) 

4.01-2 
(2.40-2) 
1.30-2 

(8.37-3) 

8.92-4 
(2.67-4) 
8.74-4 

(3.98-4) 

3.89-3 
(2.57-3) 
2.43-3 

(8.31-4) 

9.45-4 
(5.08-4) 
4.75-4 

(9.85-5) 

3.20-2 
(4.71-3) 
6.22-3 

(2.87-3) 

2.42-3 
(1.16-3) 
1.52-3 

(9.29-4) 

1.21-2 
(6.47-3) 
1.44-2 

(9.14-3) 

3.05-3 
(2.10-3) 
1.82-3 

(1.04-3) 

3.27-3 
(2.28-3) 
2.17-3 

(1.11-3) 

7.27-4 
(4.58-4) 
4.63-4 

(1.77-4) 

1.99-2 
(3.34-3) 
4.15-3 

(1.77-3) 

1.88-3 
(1.08-3) 
1.73-3 

(1.16-3) 

7.16-3 
(2.47-3) 
5.74-3 

(2.41-3) 

6.71-4 
(2.37-4) 
1.04-3 

(5.46-4) 

2.90-4 
(1.54-4) 
1.42-4 

(8.28-5) 

8.32-5 
(5.00-5) 
4.17-5 

(2.42-5) 

5.48-3 
(1.65-3) 
1.40-3 

(8.57-4) 

6.57-4 
(3.88-4) 
3.10-4 

(2.07-4) 

9.04-3 
(6.20-3) 
5.30-3 

(3.29-3) 

1.35-3 
(7.71-4) 
5.82-4 

(2.24-4) 

5.87-4 - 
(2.14-4) - 
2.59-4 

(1.28-4) - 

1.56-4 2.84-4 
(5.09-5) (4.49-5) 
6.52-5 1.50-4 

(2.39-5) (2.50-5) 

7.69-3 5.14-3 
(2.26-3) (1.00-3) 
1.57-3 1.17-3 

(8.45-4) (5.79-4) 

8.71-4 1.31-3 
(3.56-4) (6.30-4) 
3.82-4 7.33-4 

(1.50-4) (4.02-4) 

1.36-2 5.23-3 
(8.58-3) (3.17-3) 
8.1 l-3 3.20-3 

(3.56-3) (2.07-3) 

3.97-4 
(1.91-4) - 
3.91-4 

(1.56-4) - 



76 SARKAR AND PRASAD 

-0.05 i--TGrGvrn 72000 96000 

NUMBER OF HISTORIES 

FIG. 1. Relative error with scheme A( I), d= 5 mfp, Z-,/Z = 0.5. 

The maximum relative error in the range of histories N, to N, is defined as 

Emax(N,,NZ)= sup v. 
N, < N < N> 

In a similar manner, the average relative error is defined as 

N* II,-II UW3d=N -fv + l C I. 
2 1 N= N, 

0.005 
1 

o PRS-1 

x HALTON 

v FAURE- 1 

-o.oo5 c,, , , , , , , , , , 

0 8000 I6000 24000 32000 
NUMBER OF HISTORIES 

FIG. 2. Relative error with scheme A(2), d= 2 mfp, ZJC = 0.5. 
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0.005 ~ 

i o PRS-2 

i 
x. HALTON 

FAURE-I 

0 8000 16000 24000 32000 

NUMBER OF HISTORIES 

FIG. 3. Relative error with scheme A(2), d = 5 mfp, Z,/,,Y = 0.9. 

These two quantities were chosen as measures of the accuracy of the sequence 
being tested in order to present a large amount of data in a concise manner. 
Variation of the relative error with the number of histories N for a few represen- 
tative cases is shown in Figs. 1,2 and 3 (d= 5 mfp, C, = 0.9 with scheme A(1) in 
Fig. 1; d = 2 mfp, C, = 0.5 with scheme A(2) in Fig. 2; and d = 5 mfp, C, = 0.9 with 
scheme A(2) in Fig. 3). 

TABLE III 

Maximum Relative Error for Individual Collisions with Scheme A2” 

Collision 
number* 

True 
value PRS-3 Halton Fame-l 

1 (1) 2.27-4 1.99-2 5.39-2 1.00-I 
2 (7-I 5.67-4 4.87-2 1.73-2 3.60- 1 

3 (3) 9.46-4 2.00-2 3.22-3 1.01-2 

4 (4) 1.18-3 1.88-2 2.96-3 5.71-3 

5 (5) 1.18-3 7.59-3 5.13-3 5.50-3 

6 (6) 9.85-4 1.34-2 5.64-3 5.27-3 

1 (7) 1.04-4 5.62-3 6.15-3 2.32-3 

8 (8) 4.40-4 4.06-3 1.74-3 2.40-3 

9 (9) 2.44-4 6.08-3 2.12-3 1.43-3 
lO( 10) 1.22-4 3.71-3 5.06-3 1.22-3 
ll(11) 5.55-5 4.35-3 3.76-3 1.27-3 
12(12) 2.31-5 4.20-3 4.23-3 4.48-3 
13(13) 8.90-6 7.75-3 2.62-3 3.55-3 
14(14) 3.18-6 5.36-3 4.51-3 2.20-3 

a Slab thickness = 10 mfp, Z, = 0.5, N, = 48,000, N, = 95,999. 
h Values in parentheses are the dimensionality of the integral 



78 SARKAR AND PRASAD 

From Table I, we see that for scheme A( 1 ), the QRS seem to be a bit better than 
the PRS for 2 mfp, whereas the PRS are a bit better for 5 mfp. However, no clear 
conclusion can be drawn since the variation among the PRS themselves is more 
than the variation between the PRS and the QRS. 

For scheme A(2), on the other hand (Table II), both the Halton and the Faure 
sequences appear to be distinctly superior to the PRS in the range of histories 
studied for 2 and 5 mfp. The maximum relative error in the range 16,000-31,999 is 
less than that for the best PRS by factors ranging from 3 to 15. Even for 10 mfp, 
with C, = 0.5, the QRS are better than two of the PRS (PRS-1 and PRS-2). 
Further, for PRS-3, which gave comparable accuracy, a collision by collision 
analysis showed that this was due to an accidental cancelation of errors (see 
Table III). For most of the collisions which make significant contributions to the 
final result, the QRS seem to be distincly superior. 

The major reason why the QRS perform better with scheme A(2) then with A( 1) 
is that for the same collision, the dimensionality in A(2) is less than that in A( 1) by 
a factor of approximately 2- the ith collided flux in A( 1) involves 2i + 1 dimen- 
sions, whereas it involves only i dimensions in A(2). In general, for BVHK 
functions, QRS begin to outperform PRS only beyond a certain number of 
histories, this number increasing rapidly with dimensionality. This is because as the 
dimensionality increases, the effect of the term (log N)” in the discrepancy of the 
QRS is more pronounced for small N. For large N, this factor becomes insignificant 
and the discrepancy decreases as l/N. 

TABLE IV 

Maximum Relative Errors for Individual Collisions with Scheme A2” 

Collision True 
number” value PRS-3 Halton Faure- I 

1 (1) 3.03-2 1.14-2 3.85-3 8.77-3 
2 (2) 6.82-2 2.09-2 1.71-3 3.37-3 

3 (3) 1.02-l 8.56-3 1.17-3 2.86-3 

4 (4) 1.15-l 6.27-3 I .03-3 2.71-3 

5 (5) 1.04-I 5.66-3 9.13-4 2.49-3 

6 (6) 7.11-2 8.42-3 1.82-3 2.01-3 

7 (7) 5.00-2 7.37-3 2.28-3 2.43-3 

8 (8) 2.81-2 I .96-2 4.59-3 4.82-3 
9 (9) 1.41-2 2.19-2 8.35-3 1.17-2 

lO( 10) 6.32-3 3.05-2 7.26-3 7.84-3 
ll(l1) 2.59-3 3.54-2 2.92-2 1.30-2 
l2( 12) 9.10-4 4.22-2 2.39-2 4.42-2 
13(13) 3.76-4 8.16-2 1.87-2 6.20-2 
14( 14) 1.084 6.87-2 2.11-l 1.44-l 
15(15) 3.24-5 9.61-2 1.78-l 3.32-l 

y Slab thickness 5 mfp, Z = 0.9, N, = 16,000, Nz = 31,999. 
h Values in parentheses refer to dimensionality of the integral 
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o FAURE 

x PRS-3 

v RANDOM 

0 4000 8000 
NUMBER OF HISTORIES 

FIG. 4. RMS discrepancy for PRS-3 and Faure sequence for s = 4. 

The effect of dimensionaliy can be seen in Tables III and IV, where the maximum 
relative error for one PRS and the Halton and the Faure sequences is shown for dif- 
ferent collisions. The relative performance of the QRS is better for smaller dimen- 
sions except for a few accidental fluctuations. 

The effect of dimensionality can also be seen in Figs. 4 and 5, which are plots of 
the RMS discrepancy against IV for PRS-3 and the Faure sequence for dimensions 4 
and 10, respectively. These were obtained using Warnock’s method [ 121. For the 
sake of comparison, the expectation value of the RMS discrepancy of a random 
sequence (see Eq. (2)) has also been plotted in the same graphs. For s = 4, the dis- 

o FAURE 

x PRS-3 

v RANDOM 

0.000 ~ 8000 
NUMBER OF HISTORIES 

FIG. 5. RMS discrepancy for PRS-3 and Faure sequence for s = 10. 
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crepancy of the Faure seqeunce is lower than that of the PRS for all N, whereas for 
s = 10, the discrepancy slowly starts becoming better only for N > 2000. 

The fact that the functions encountered in scheme A( 1) are not of BVHK may 
also have contributed to the relatively poorer performance of the QRS with this 
scheme. It may be noted here that all the theorems predicting the errors of the use 
of QRS for integration assume that the integrand is BVHK. On the other hand, for 
a random sequence (which the PRS may be expected to approximate), one would 
still get an error to be 0( I/&?) asymptotically with scheme A( 1) since the non- 
BVHK functions in A( 1) are products of theta functions. 

To check this a little further, a few results were obtained with a scheme which we 
designate A( 1)‘. This scheme was similar to A( 1) in all respects except that the par- 
ticle was not killed at every collision with probability (1 - Z,/C); instead its weight 
was modified by a factor C,/Z (survival biasing). With this procedure, the dimen- 
sionality of the problem becomes almost equal to that with A(2), without in any 
way changing the non BVHK nature of the integrand. (For this scheme, the ith 
collided flux is evaluated by means of a i+ 1 dimensional integral.) Table V gives a 
comparison of the ratios of the maximum relative error of the PRS and the Halton 
sequence with schemes A( 1)’ and A(2) for a few cases. In almost all the cases, the 
relative performance of the Halton sequence was appreciably better with A(2) than 
with A( 1)‘. Though not conclusive, this lends support to the view that the QRS 

TABLE V 

Ratio of the Maximum Relative Errors between PRS and 
Halton Sequences for Non BVHK” and BVHK Functions 

Ratio of maximum relative errors 

X” x, 

2 0.5 

2 0.9 

5 0.5 

5 0.9 

N,-N, 

4,ow 7,999 
x,OoG15,999 

16,00&3 1,999 

4,00&7,999 
8,00&l 5,999 

16,000-31,999 

4,ooo-1,999 
8,00@15,999 

16,00&31,999 

4,00@7,999 
8,00+15,999 

16,00&3 1,999 

PRS-l/Halton PRS2jHalton PRS-3jHalton 

NBVHK BVHK NBVHK BVHK NBVHK BVHK 

2.00 2.46 3.31 6.23 3.41 5.08 
3.81 11.13 7.71 13.41 7.72 11.28 
5.26 14.56 2.88 16.53 7.14 14.56 

2.10 2.09 2.22 5.04 2.67 2.76 
3.36 12.74 3.44 11.36 4.92 8.74 
5.21 14.60 1.54 Il.39 4.81 II.10 

1.08 1.86 1.03 5.84 1.79 3.63 
1.37 3.62 1.47 4.40 2.78 2.63 
1.87 4.4 I 2.1 I 4.44 2.96 2.96 

0.72 4.03 0.75 3.60 2.29 2.01 
1.66 3.49 1.16 3.68 2.84 2.86 
2.37 5.10 1.40 4.90 1.54 5.58 

(1 NBVHK refers to scheme Al’, which combines analog sampling of collision points and leakage with 
survival biasing. 
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may perform better with BVHK functions than with the type of non BVHK 
functions encountered in scheme A( 1). 

Now, we try to compare the performance of the sequences among themselves. So 
far as the PRS are concerned, there are considerable variations among themselves 
in each individual case. On the whole, however, none of the sequences can be con- 
sidered to be clearly superior for problems of this type. 

Between the Halton and the Faure sequences, the Halton sequence performs as 
well as, and in many cases better than, the Faure sequence. This result, at first sight, 
appears surprising since the constant C,s in the theoretical bounds on the dis- 
crepancy tends to cc with s for the Halton sequence and to 0 for the Faure 
sequence (Eqs. (3), (4), (5) and (6)): A likely explanation for this behaviour is 
provided by the fact that the Faure-1 sequence was generated with a single prime 
corresponding to the largest dimensionality integral encountered in the problem, 
i.e., for a problem in which the largest dimensionality integral was 11, the prime 
used was 11 and all the lower dimensional integral were also evaluated using the 
same sequence. As is evident from Eq. (6) such a procedure leads to large dis- 
crepancies for lower dimensional integrals. Some results were also obtained using 
the most optimal prime for each collision (Faure-2). In general, the errors 
decreased with the use of Faure-2, but since the errors themselves are small, the 

TABLE VI 

Maximum and Average Errors with Scheme Bl for a 2 mfp Slab 

Maximum and average errors for 

Max. 
Z dim. T/R” NI-N, 

0.5 23 T 8,00&15,999 

16,OO(t31,999 

0.5 23 R 8,OOG15,999 

16,00&3 1,999 

0.9 23 T 8,OOG15,999 

16,00@31,999 

0.9 23 R 8,00@15,999 

16,00&31,999 

PRS-1 

2.02-3 
(9.65-4) 
2.16-3 

(1.59-3) 

6.30-3 
(4.05-3) 
5.23-3 

(4.01-3) 

2.28-3 
(9.69-4) 
2.43-3 

(1.53-3) 

7.59-3 
(5.24-3) 
6.59-3 

(4.83-3) 

PRS-2 

2.97-3 
(1.51-3) 
1.53-3 

(9.82-4) 

3.28-3 
(1.57-3) 
2.65-3 

(1.10-3) 

5.70-3 
(3.53-3) 
2.90-3 

(2.24-3) 

2.19-3 
(7.18-4) 
1.46-3 

(4.84-4) 

PRS-3 

2.59-3 
(1.18-3) 
1.06-3 

(7.03-4) 

3.37-3 
(1.08-3) 
3.24-3 

(1.90-3) 

2.60-3 
(5.85-4) 
1.93-3 

(7.04-4) 

6.24-3 
(3.89-3) 
3.94-3 

(1.13-3) 

Halton Faure-1 Faure-2 

3.60-4 1.20-3 
(1.50-4) 3.30-4) 
1.89-4 5.18-4 

(1.07-4) (1.40-4) 

5.21-4 3.54-3 
(1.91-4) (1.26-3) 
2.74-4 1.54-3 

(1.27-4) (4.46-4) 

9.89-4 6.42-3 
(5.86-4) (2.75-3) 
9.65-4 2.76-3 

(7.10-3) (1.32-3) 

7.49-4 8.47-3 
(1.54-4) (2.67-3) 
4.72-4 2.98-3 

(1.95-4) (9.43-4) 

4.72-4 
(2.18-4) 
2.47-4 

(1.09-4) 

6.20-4 
(2.43-4) 
3.14-4 

( I .22-4) 

1.11-3 
(6.82-4) 
7.36-4 

(3.90-4) 

1.94-3 
(7.67-4) 
7.94-4 

(3.92-4) 

” T-transmission; R-reflection. 
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effect is not very pronounced. The improvement obtained with Faure-2 was more 
pronounced for problem B and is discussed later. 

A few cases were also studied using the scrambled Halton sequence. In all the 
cases studied, however, the scrambled Halton sequence was only marginally better. 
For example, for a 2 mfp slab with L’, = 0.5 using scheme A(2), the maximum 
relative error was 1.474 with the Halton sequence and 1.4W with the scrambled 
Halton sequence. Similarly, for a 2 mfp slab with t;, = 0.9 using scheme A(2), the 
maximum error with the Halton sequence was 4.17-5 and with the scrambled 
Halton sequence, it was 3.43-5. The range of histories in both the cases was 
16,OO(r31,999. 

Tables VI through IX give the maximum and average relative errors for both the 
transmitted and the reflected fluxes at the boundaries of the slab for the straight 
ahead and back case (problem B) for 2 and 5 mfp. This problem may be considered 
to be nearer to real physical problems. The Halton sequence is clearly superior to 
the PRS in all the cases, the difference being more pronounced for smaller 
thicknesses. The same result is illustrated by Figs. 6 through 9, which are plots of 
the relative error against the number of histories for a few representative cases. 
Faure-1, however, does not perform very well. Faure-2 performs about as well as 
the Halton sequence. It is not clear as to why the Faure sequence did not outper- 
form the Halton sequence despite using the most optimal primes for each integral. 

TABLE VII 

Maximum and Average Errors with Scheme Bl for a 5 mfp Slab 

Max. 
C dim. T/R” N, -N, 

0.5 31 T 8,00&l 5,999 

16,00&3 1,999 

0.5 31 R 8,00&l 5,999 

16,00&31,999 

0.9 48 T 8,oofLl5,999 

16,OOCk3 1,999 

0.9 49 R 8,00@15,999 

16,OOC31,999 

Maximum and average errors for 

PRS-1 PRS-2 PRS-3 Halton Faure-1 Faure-2 

1.54-2 1.87-2 2.26-2 5.28-3 1.17-2 3.00-3 
(1.08-2) (1.40-2) (1.75-2) (2.60-3) (6.87-3) (7.52.?) 

1.25-2 1.88-2 1.87-2 2.65-3 1.02-2 2.17-3 
(9.27-3) (1.39-2) (1.66-2) (1.59-3) (4.96-3) (7.75-4) 

1.18-2 5.22-3 4.69-3 9.07-4 5.34-3 9.47-4 
(1.00-2) (3.63-3) (4.06-3) (3.45-4) (2.40-3) (3.63-4) 
1.16-2 6.30-3 5.12-3 4.23-4 3.05-3 4.25-4 

(9.68-3) (5.35-3) (4.52-3) (2.05-4) (7.36-4) (9.88-5) 

1.25-2 8.32-3 9.35-3 9.47-3 5.29-2 
(5.16-3) (4.25-3) (1.87-3) (4.23-3) (3.02-2) 
7.82-3 8.72-3 7.14-3 5.61-3 5.36-2 

(1.58-3) (2.82-3) (3.57-3) (3.62-3) (4.46-2) ~ 

7.14-3 5.61-3 7.91-3 2.86-3 2.90-2 .- 

(5.43-3) (3.66-3) (5.23-3) (1.21-3) (4.40-3) 
5.74-3 3.41-3 3.01-3 1.30-3 1.46-2 

(4.16-3) (6.04-4) (1.983) (6.51-4) (8.93-3) ~ 

a T-transmission; R-reflection 



TABLE VIII 

Maximum and Average Errors with Scheme B2 for a 2 mfp Slab” 

Max. 
C dim. T/R’ N,-Nz PRS-1 

Maximum and average errors for 

PRS-2 PRS-3 Halton Fame- 1 Fame-2 

0.5 23 T S,OOG15,999 

16,OOG31,999 

0.5 23 R 8,00@15,999 

16,OO(f31,999 

0.9 23 T 8,00&15,999 

16,00~31,999 

0.9 23 R 8,000-l 5,999 

16,00@3 1,999 

8.44-4 8.64-4 
(3.33-4) (3.75-4) 
4.52-4 6.10-4 

( 1.42-4) (2.49-4) 

1.21-2 
(8.79-3) 
9.09-3 

(7.49-3) 

6.77-3 
(4.03-3) 
5.92-3 

(2.34-3) 

2.37-3 
(7.53-4) 

1.22-3 
(3.96-4) 

3.80-3 
(2.41-3) 
2.54-3 

(1.70-3) 

1.03-2 
(7.44-3) 
8.38-3 

(6.68-3) 

3.70-3 
(1.29-3) 
2.59-3 

(8.55-4) 

1.14-3 
(5.07-4) 
8.25-4 

(3.71-4) 

6.98-3 
(3.00-3) 
9.03-3 

(5.73-3) 

3.54-3 
(1.82-3) 
2.36-3 

( 1.02-3 ) 

6.75-3 
(3.46-3) 
3.69-3 

(1.41-3) 

1.05-4 
(2.98-4) 
5.61-5 

(1.17-5) 

5.12-4 
(1.32-4) 
3.45-4 

(1.07-4) 

7.34-4 
(3.93-4) 
7.78-4 

(5.56-4) 

7.92-4 
(2.27-4) 
6.32-4 

(2.55-4) 

1.62-3 
(6.04-4) 
6.27-4 

(2.35-4) 

3.84-3 
(1.85-3) 
1.94-3 

(4.71-4) 

6.85-3 
(3.20-3) 
2.95-3 

(1.61-3) 

7.47-3 
(2.93-3) 
3.08-3 

(8.31-4) 

1.92-4 
(4.71-5) 
8.16-5 

(1.63-5) 

7.77-4 
(2.62-4) 
2.83-4 

(7.84-5) 

6.93-4 
(1.88-4) 
4.49-4 

(1.92-4) 

2.45-3 
(9.74-4) 
7.16-4 

( 1.65-4) 

U Biasing parameter k is 0.67 for C, = 0.5 and 0.29 for .Z, = 0.9. 
’ T-transmission; R-reflection. 

TABLE IX 

Maximum and Average Errors with Scheme B2 for a 5 mfp Slab” 

Max. 
C dim. T/R” N,rN, 

0.5 31 T 8,OOG15,999 

16,000-31,999 

0.5 31 R 8,00~15,999 

16,00&31,999 

0.9 49 T 8,OOfk15,999 

16,OOfk31,999 

0.9 49 R 8,00&l 5,999 

16,00&31,999 

Maximum and average errors for 

PRS-1 PRS-2 PRS-3 Halton Faure-1 Faure-2 

5.52-3 6.87-3 4.98-3 1.31-3 2.24-2 4.15-3 
(1.80-3) (2.01-3) (2.25-3) (6.70-4) (1.25-2) (2.35-3) 
1.75-3 2.76-3 3.55-3 8.08-4 9.44-3 2.17-3 

(6.27-4) (1.23-3) (1.11-3) (3.38-4) (5.71-3) (1.23-3) 

2.85-2 2.51-2 2.29-2 1.88-3 3.43-2 5.19-3 
(2.21-2) (1.71-2) (1.58-2) (5.66-4) (1.68-2) (2.84-3) 
2.39-2 1.33-2 2.11-2 1.11-3 1.28-2 1.87-3 

(1.77-2) (6.77-3) (9.21-3) (3.12-4) (9.86-3) (1.16-3) 

1.54-2 8.90-3 9.86-3 4.1 l-3 7.63-2 
(9.75-3) (4.46-3) (2.03-3) (1.46-3) (6.14-2) - 
1.32-2 5.33-3 4.54-3 2.52-3 6.13-2 

(4.24-3) (2.08-3) (2.12-3) (1.08-3) (4.26-2) - 

8.60-3 4.53-3 1.61-2 3.97-3 1.23-l 
(5.47-3) (1.98-3) (1.01-2) (1.18-3) (6.39-2) ~ 
1.01-2 5.05-3 3.88-3 1.11-3 3.08-2 

(7.85-3) (2.44-3) (2.04-3) (4.1 l-4) (2.08-2) - 

” Biasing parameter k is 0.67 for Z, = 0.5 and 0.29 for C, = 0.9. 
’ T-transmission; R-reflection. 
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FIG. 6. Relative error in transmission with scheme B( 1 ), d = 2 mfp, C,/E = 0.5, a = 0.6. 

It may be noted here that the use of the Fame sequence in this manner takes con- 
siderably more computer time-e.g., for a 23 dimensional problem, 100 random 
numbers have to be generated. Therefore, it seems that for problems of this type the 
most optimal use of the Faure sequence would be with the judicious use of a few 
primes. 

No attempt was made to compare the efficiencies of the different sequences, 
which would have involved the estimation of the computation time per history also. 
This was because the relative importance of the generation time for any sequence 
will greatly depend on the type of problem studied. However, as one would expect, 
the QRS take much more computing time than the PRS. 

0.000 

x HALTON 

v FAURE-2 

-0.005 
I II I I IIITI I 1111 

0 8000 I6000 24000 32000 

NUMBER OF HISTORIES 

FIG. 7. Relative error in reflection with scheme B( 1 ), d = 2 mfp, C,/z = 0.5, C( = 0.6 
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o PRS-2 

Y. HALTON 

v FAURE-2 

-0.005 

0 6000 16000 24000 32000 

NUMBER OF HISTORIES 

FIG. 8. Relative error in transmission with scheme B(2), d= 5 mfp, L,/Z=O.5, a =0.6, bias 
parameter k = 0.67. 

Just as we had completed the revision of our manuscript, we received a preprint 
of a paper by Bennett L. Fox on the implementation and efficiency of quasi random 
generators [13]. In this paper, the efficiencies of the Halton, Faure and Sobol 
sequences and a pseudo random sequence are compared for test multidimentional 
integrals. The conclusions are that the Sobol sequence is to be preferred for dimen- 
sions 2 through 6 and the Faure sequence for dimensions larger than 6. The latter 
conclusion differs somewhat from ours. We believe the difference may be mainly 
due to the difference in the type of problem studied-we consider an integral 
equation, whereas they consider a multidimensional integral. 

i x. HALTON 

v. FAURE-2 

-0.05 
I I I I1 I I I I I I I I I1 

0 6000 16000 24000 32000 
NUMBER OF HISTORIES 

FIG. 9. Relative error in reflection with scheme B(2), d= 5 mfp, Z,/C = 0.5, CI = 0.6, bias parameter 
k = 0.67. 
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CONCLUSIONS 

1. The QRS yield higher accuracies when the errors themselves are small and 
therefore may be useful in high precision work in radiation transport such as in 
benchmark problems. 

2. As expected on theoretical grounds, the performance of the QRS is better 
when the dimensionality of the problem is small. Smaller dimensions are associated 
with small thicknesses as well as Monte Carlo schemes which make use of 
procedures such as survival biasing, expectation estimator, etc. 

3. For the kind of problems studied here, the Halton and the Faure sequen- 
ces perform equally well. No appreciable advantage was obtained with the use of 
scrambled Halton sequences. 

4. Though not conclusive, it appears that the relative performance of the 
QRS is poorer with analog schemes which give rise to non BVHK functions. 

APPENDIX 1 

We consider a slab of thickness d mfp and with C and C, as the total and scatter- 
ing cross sections, respectively. Let, $1 (X, n) and qz (.I’, n) be the nth scattered 
forward and backward fluxes at x, respectively. They, then, satisfy the equations 

(-1)‘f’ 4,(x, n) dx +cICI,(X,n)=~,Ca~i(x,n-l)+/j~3 ,(.Gfi--l)l, 
i=l,2;n31 

@,(X 0) = exp( -2.x) 6,. , 

subject to the boundary conditions 

ti,(O,n)=O, n = 1, 2,... 

Ic/?(d, n)=O, n = 1, 2,.... 

To separate the variables, we express $;(-u, n) as 

cc/ib, n) = .f A,(n) di,k(X) 
k=O 

and obtain for A,(n) and di.k(~), the expressions 

and 

ikAk(n)=A,(n- 1). 
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Using standard procedures (see, for example, Davison [ 14]), i.e, writing the 
corresponding equations for the adjoint fluxes and making use of orthogonality 
relations, we can obtain the complete solution for the fluxes. Since our interest, 
however, is only with large n, we give below the solutions corresponding to the 
smallest eigenvalue 1, 

q!~,,~(x) = sin 0”~ 

~$~,~(x)=sino,(&x) 

A,(n) = (~,/J&)” c(ac, + Pc2), 

where ,I, and oO are obtained as solutions of the equations 

and 

exp( - 2iwOd) = 
-io,+ 1 -r& 
zw,+ 1 -a& 

and c, c, and c2 are given by 

c, = 
Csinyd-ycosyd+yexp(-Gd) 

C2+y2 

c2 = y - exp( - Cd)(C sin yd + y cos yd) 
Z2+y2 
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